Imputation of missing longitudinal data: a comparison of methods.

نویسندگان

  • Jean Mundahl Engels
  • Paula Diehr
چکیده

BACKGROUND AND OBJECTIVES Missing information is inevitable in longitudinal studies, and can result in biased estimates and a loss of power. One approach to this problem is to impute the missing data to yield a more complete data set. Our goal was to compare the performance of 14 methods of imputing missing data on depression, weight, cognitive functioning, and self-rated health in a longitudinal cohort of older adults. METHODS We identified situations where a person had a known value following one or more missing values, and treated the known value as a "missing value." This "missing value" was imputed using each method and compared to the observed value. Methods were compared on the root mean square error, mean absolute deviation, bias, and relative variance of the estimates. RESULTS Most imputation methods were biased toward estimating the "missing value" as too healthy, and most estimates had a variance that was too low. Imputed values based on a person's values before and after the "missing value" were superior to other methods, followed by imputations based on a person's values before the "missing value." Imputations that used no information specific to the person, such as using the sample mean, had the worst performance. CONCLUSIONS We conclude that, in longitudinal studies where the overall trend is for worse health over time and where missing data can be assumed to be primarily related to worse health, missing data in a longitudinal sequence should be imputed from the available longitudinal data for that person.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

چند رویکرد برخورد با مقادیر گمشده‌ متغیرهای کمی و بررسی اثر آنها بر نتایج حاصل از یک کارآزمایی‌ بالینی

Background and Objectives: A major challenge that affects the longitudinal studies is the problem of missing data. Missing in the data may result in the loss of part of the information which reduces the accuracy of the estimator and obtain the results will be biased and inaccurate. Therefore, it is necessary to evaluate the missing data mechanism from a longitudinal research and to consider thi...

متن کامل

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

Influence of Pattern of Missing Data on Performance of Imputation Methods: An Example from National Data on Drug Injection in Prisons

Background Policy makers need models to be able to detect groups at high risk of HIV infection. Incomplete records and dirty data are frequently seen in national data sets. Presence of missing data challenges the practice of model development. Several studies suggested that performance of imputation methods is acceptable when missing rate is moderate. One of the issues which was of less concern...

متن کامل

Simulation Study: Introduction of Imputation Methods for Missing Data in Longitudinal Analysis

Missing data are vital subject to perform a proper longitudinal analysis. Some just ignore and discard all missing data to have complete dataset. However, it can result in a very substantial loss of information. Therefore, it is important to comprehend imputation methods of handling missing data. This paper discusses four common imputation methods for longitudinal analysis. Then, using simulati...

متن کامل

An Empirical Comparison of Performance of the Unified Approach to Linearization of Variance Estimation after Imputation with Some Other Methods

Imputation is one of the most common methods to reduce item non_response effects. Imputation results in a complete data set, and then it is possible to use naϊve estimators. After using most of common imputation methods, mean and total (imputation estimators) are still unbiased. However their variances (imputation variances) are underestimated by naϊve variance estimators. Sampling mechanism an...

متن کامل

تحلیل مشاهدات گمشده در مطالعه اثر دوزهای مختلف مکمل ویتامین D بر مقاومت به انسولین در دوران بارداری

Introduction: The aim  of  this  study  was to impute missing data  and  to compare the effect  of  different doses of  vitamin D supplementation on  insulin resistance during  pregnancy. Methods: A clinical trial  study   was done on 104  women  with diabetes and gestational age less than 12 weeks between 1391 and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of clinical epidemiology

دوره 56 10  شماره 

صفحات  -

تاریخ انتشار 2003